Line data Source code
1 : /* 2 : * Copyright (C) 2020-2025 MEmilio 3 : * 4 : * Authors: Lena Ploetzke 5 : * 6 : * Contact: Martin J. Kuehn <Martin.Kuehn@DLR.de> 7 : * 8 : * Licensed under the Apache License, Version 2.0 (the "License"); 9 : * you may not use this file except in compliance with the License. 10 : * You may obtain a copy of the License at 11 : * 12 : * http://www.apache.org/licenses/LICENSE-2.0 13 : * 14 : * Unless required by applicable law or agreed to in writing, software 15 : * distributed under the License is distributed on an "AS IS" BASIS, 16 : * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 17 : * See the License for the specific language governing permissions and 18 : * limitations under the License. 19 : */ 20 : 21 : #ifndef IDE_SEIR_H 22 : #define IDE_SEIR_H 23 : 24 : #include "memilio/math/eigen.h" 25 : #include "memilio/utils/time_series.h" 26 : #include "ide_seir/parameters.h" 27 : #include "ide_seir/infection_state.h" 28 : #include "memilio/utils/logging.h" 29 : 30 : #include <iostream> 31 : 32 : #include <vector> 33 : 34 : namespace mio 35 : { 36 : namespace iseir 37 : { 38 : template <typename FP = double> 39 : class Model 40 : { 41 : using Pa = ParametersBase<FP>; 42 : using Vec = TimeSeries<double>::Vector; 43 : 44 : public: 45 : /** 46 : * @brief Create an IDE SEIR model. 47 : * 48 : * @param[in, out] init TimeSeries with the initial values of the number of susceptibles at associated initial times. 49 : * The time steps in this vector should be equidistant and equal to the time step used for the simulation. 50 : * A certain history of time steps and values for susceptibles is needed. 51 : * A warning is displayed if the condition is violated. 52 : * Co be more precise, the first time point needs to be smaller than -(k-1)*TimeStep with 53 : * k=ceil((InfectiousTime + LatencyTime)/TimeStep). 54 : * The last time point in this vector should be a time 0. 55 : * @param[in] dt_init The size of the time step used for numerical simulation. 56 : * @param[in] N_init The population of the considered region. 57 : */ 58 2 : Model(TimeSeries<double>&& init, double dt_init, int N_init, const Pa& Parameterset_init = Pa()) 59 2 : : parameters{Parameterset_init} 60 2 : , m_result{std::move(init)} 61 2 : , m_result_SEIR{TimeSeries<double>(4)} 62 2 : , m_dt{dt_init} 63 2 : , m_N{N_init} 64 : { 65 2 : } 66 : 67 : /** 68 : * @brief Simulate the evolution of infection numbers with the given IDE SEIR model. 69 : * 70 : * The simulation is performed by solving the underlying model equation numerically. 71 : * Here, an integro-differential equation is to be solved. The model parameters and the initial data are used. 72 : * 73 : * @param[in] t_max Last simulation day. 74 : * If the last point of time of the initial TimeSeries was 0, the simulation will be executed for t_max days. 75 : * @return The result of the simulation, stored in a TimeSeries with simulation time and 76 : * associated number of susceptibles. 77 : */ 78 2 : TimeSeries<double> const& simulate(int t_max) 79 : { 80 : 81 2 : m_l = (int)std::floor(parameters.template get<LatencyTime>() / m_dt); 82 2 : m_k = 83 2 : (int)std::ceil((parameters.template get<InfectiousTime>() + parameters.template get<LatencyTime>()) / m_dt); 84 2 : if (m_result.get_time(0) > -(m_k - 1) * m_dt) { 85 0 : log_warning("Constraint check: Initial data starts later than necessary. The simulation may be distorted. " 86 : "Start the data at time {:.4f} at the latest.", 87 0 : -(m_k - 1) * m_dt); 88 : } 89 : 90 162 : while (m_result.get_last_time() < t_max) { 91 160 : m_result.add_time_point(m_result.get_last_time() + m_dt); 92 160 : Eigen::Index idx = m_result.get_num_time_points(); 93 : 94 : // R0t is the effective reproduction number at time t 95 320 : auto R0t1 = parameters.template get<ContactFrequency<double>>().get_cont_freq_mat().get_matrix_at( 96 320 : m_result.get_time(idx - 2))(0, 0) * 97 160 : parameters.template get<TransmissionRisk>() * parameters.template get<InfectiousTime>(); 98 320 : auto R0t2 = parameters.template get<ContactFrequency<double>>().get_cont_freq_mat().get_matrix_at( 99 320 : m_result.get_last_time())(0, 0) * 100 160 : parameters.template get<TransmissionRisk>() * parameters.template get<InfectiousTime>(); 101 : 102 320 : m_result.get_last_value() = 103 320 : Vec::Constant(1, m_result[idx - 2][0] * exp(m_dt * (0.5 * 1 / m_N) * 104 160 : (R0t1 * num_integration_inner_integral(idx - 2) + 105 160 : R0t2 * num_integration_inner_integral(idx - 1)))); 106 : } 107 2 : return m_result; 108 : } 109 : 110 : /** 111 : * @brief Calculate the distribution of the population in E, I and, R based on the calculated values for S. 112 : * 113 : * The values are calculated using the average latency and infection time, not using model equations. 114 : * The simulated values of S are used for this purpose, so the simulate() function should be called beforehand. 115 : * 116 : * @return The result of the calculation stored in an TimeSeries. The TimeSeries contains the simulation time and an 117 : * associated Vector with values for S, E, I, and R. 118 : */ 119 2 : TimeSeries<double> const& calculate_EIR() 120 : { 121 2 : Eigen::Index num_points = m_result.get_num_time_points(); 122 2 : double S, E, I, R; 123 206 : for (Eigen::Index i = m_k; i < num_points; ++i) { 124 204 : S = m_result[i][Eigen::Index(InfectionState::S)]; 125 204 : E = m_result[i - m_l][Eigen::Index(InfectionState::S)] - S; 126 204 : I = m_result[i - m_k][Eigen::Index(InfectionState::S)] - m_result[i - m_l][Eigen::Index(InfectionState::S)]; 127 204 : R = m_N - S - E - I; 128 204 : m_result_SEIR.add_time_point(m_result.get_time(i), (Vec(4) << S, E, I, R).finished()); 129 : } 130 4 : return m_result_SEIR; 131 : } 132 : 133 : // Used Parameters for the simulation. 134 : Pa parameters{}; 135 : 136 : private: 137 : /** 138 : * @brief Density of the generalized beta distribution used for the function f_{beta} of the IDE SEIR model. 139 : * 140 : * @param[in] tau evaluation point of the generalized Beta distribution. 141 : * @param[in] p parameter p of the generalized Beta distribution. 142 : * @param[in] q parameter q of the generalized Beta distribution. 143 : * @result Evaluation of the generalized beta distribution at the given evaluation point. 144 : */ 145 26560 : double generalized_beta_distribution(double tau, double p = 3.0, double q = 10.0) const 146 : { 147 52800 : if ((parameters.template get<LatencyTime>() < tau) && 148 26240 : (parameters.template get<InfectiousTime>() + parameters.template get<LatencyTime>() > tau)) { 149 26240 : return tgamma(p + q) * pow(tau - parameters.template get<LatencyTime>(), p - 1) * 150 26240 : pow(parameters.template get<InfectiousTime>() + parameters.template get<LatencyTime>() - tau, 151 : q - 1) / 152 26240 : (tgamma(p) * tgamma(q) * pow(parameters.template get<InfectiousTime>(), p + q - 1)); 153 : } 154 320 : return 0.0; 155 : } 156 : 157 : /** 158 : * @brief Numerical differentiation of one compartment using a central difference quotient. 159 : * 160 : * @param[in] ts_ide TimeSeries with the time steps already calculated. 161 : * Used as function values in numerical differentiation. 162 : * @param[in] idx Time index at which the numerical differentiation should be performed. 163 : * @param[in] compartment Compartment for which the numerical differentiation is to be performed. 164 : * @return Numerically approximated derivative of the function belonging to the compartment at the point t[idx]. 165 : */ 166 26560 : double central_difference_quotient(TimeSeries<double> const& ts_ide, InfectionState compartment, 167 : Eigen::Index idx) const 168 : { 169 26560 : return (ts_ide[idx + 1][Eigen::Index(compartment)] - ts_ide[idx - 1][Eigen::Index(compartment)]) / (2 * m_dt); 170 : } 171 : 172 : /** 173 : * @brief Numerical integration of the inner integral of the integro-differential equation for the group S using 174 : * a trapezoidal sum. 175 : * 176 : * @param[in] idx Index of the point of time used in the inner integral. 177 : * @return Result of the numerical integration. 178 : */ 179 320 : double num_integration_inner_integral(Eigen::Index idx) const 180 : { 181 320 : double res = 0.5 * (generalized_beta_distribution(m_result.get_time(idx) - m_result.get_time(idx - m_k)) * 182 320 : central_difference_quotient(m_result, InfectionState::S, m_k) + 183 320 : generalized_beta_distribution(m_result.get_time(idx) - m_result.get_time(idx - m_l)) * 184 320 : central_difference_quotient(m_result, InfectionState::S, idx - m_l)); 185 320 : Eigen::Index i = idx - m_k + 1; 186 26240 : while (i <= idx - m_l - 2) { 187 25920 : res += (generalized_beta_distribution(m_result.get_time(idx) - m_result.get_time(i)) * 188 25920 : central_difference_quotient(m_result, InfectionState::S, i)); 189 25920 : ++i; 190 : } 191 320 : return res; 192 : } 193 : 194 : // TimeSeries containing points of time and the corresponding number of susceptibles. 195 : TimeSeries<double> m_result; 196 : // TimeSeries containing points of time and the corresponding number of susceptibles, exposed, 197 : // infected and recovered. 198 : TimeSeries<double> m_result_SEIR; 199 : 200 : // Timestep used for simulation. 201 : double m_dt{0}; 202 : // Population of the considered region. 203 : int m_N{0}; 204 : 205 : // Two Indices used for simulation. 206 : Eigen::Index m_k{0}; 207 : Eigen::Index m_l{0}; 208 : }; 209 : } // namespace iseir 210 : } // namespace mio 211 : #endif